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Darshan background
Darshan is a lightweight tool that can capture 
details about the I/O behavior of applications
➢ Inform tuning decisions of app scientists
➢ Gain insight into I/O trends on large-scale 

computing platforms

Darshan’s design geared towards full-time 
deployment on HPC systems (currently on by 
default at ALCF, NERSC, OLCF, etc.)
➢ Transparent –  no app changes required
➢ Low overhead – minimal perturbations to app 

runtime
➢ Modular – instrumentation can be extended to 

account for new I/O technologies

Default mode: capture bounded statistical 
records of I/O activity for each file accessed 

by the app 

DXT (Darshan eXtended Tracing) mode: 
high-fidelity tracing of read/write operations
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HEP-CCE
Darshan as a utility for HEP-CCE
Motivation: An ability to instrument the I/O behavior of HEP workflows is critical to 
characterizing and improving their usage of HPC storage
➢ The ongoing shift of HEP workflows to HPC facilities points to potential untapped I/O 

tuning opportunities here

Plan: Leverage Darshan in non-MPI mode to better understand HEP workflow I/O 
access patterns and performance characteristics
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Darshan enhancements driven by
HEP workflows
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Darshan handling of fork()
ATLAS AthenaMP framework leverages 
fork() to spawn worker processes that 
perform event processing and I/O 
independently

Darshan library not originally designed to 
handle fork() gracefully

• Child process inherits copy of the parent 
library state due to copy-on-write 
semantics – child instrumentation state 
reflects access patterns of parent 
pre-fork() and child process 
post-fork()

 master

master Darshan
Library state
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master input and master output files incorrectly 
accounted for in worker instrumentation state
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Darshan handling of fork()
To address this Darshan was modified to 
properly handle apps that call fork()

• Use pthread_atfork() to register a 
callback that is executed before passing 
control to child process

• Darshan atfork callback re-initializes the 
library to clear all parent process state

• Child processes maintain mapping to 
corresponding parent process ID, 
allowing Darshan logs to capture process 
relationships
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HEP-CCE
Darshan library runtime configuration
To bound memory overheads, Darshan imposes several internal memory limits

• Total memory for all module records
• Total memory for all record names
• Per-module limits on number of instrumented records

However, Darshan has traditionally offered insufficient mechanisms for fine-tuning 
library memory usage and instrumentation scope
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Build and runtime configurable 

hardcoded



HEP-CCE
Darshan library runtime configuration
To bound memory overheads, Darshan imposes several internal memory limits

• Total memory for all module records
• Total memory for all record names
• Per-module limits on number of instrumented records

However, Darshan has traditionally offered insufficient mechanisms for fine-tuning 
library memory usage and instrumentation scope

• No method to increase module record limits
• Limited methods for restricting which record names to instrument
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export DARSHAN_EXCLUDE_DIRS=”/home,/tmp”

Users can only exclude record names using directory prefixes

Build and runtime configurable 

hardcoded
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Darshan library runtime configuration
This lack of user control can complicate full instrumentation of apps, particularly the 
Python frameworks used in HEP projects – often ROOT I/O is completely missed!

To address this problem, we added a
comprehensive runtime configuration
system to Darshan, allowing users to
control specific instrumentation settings:

• Active/inactive instrumentation modules
• Global and per-module memory limits
• Record name exclusions
• etc.
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Darshan library runtime configuration
Full instrumentation of ATLAS AthenaMP requires 7000+ file records:
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* File name regex code borrowed from Tyler Reddy (LANL)



HEP-CCE
Darshan library runtime configuration
Full instrumentation of ATLAS AthenaMP requires 7000+ file records:

3500+ header files
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HEP-CCE
Darshan library runtime configuration
Full instrumentation of ATLAS AthenaMP requires 7000+ file records:

800+ Python source & compiled code
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HEP-CCE
Darshan library runtime configuration
Full instrumentation of ATLAS AthenaMP requires 7000+ file records:

500+ shared libraries
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HEP-CCE
Darshan library runtime configuration
Full instrumentation of ATLAS AthenaMP requires 7000+ file records:

and more…
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Darshan library runtime configuration

Darshan record name exclusion/inclusion properties can help ensure we get the 
instrumentation data we want without exorbitant memory costs
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and finally, a few ROOT files

Full instrumentation of ATLAS AthenaMP requires 7000+ file records:
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Potential next steps with Darshan in IOS
Utilize new Darshan instrumentation modules to better understand I/O behavior of 
other IOS activities
➢ HDF5 module: insights into DUNE HDF5 usage, ROOT→HDF5 serialization efforts
➢ DAOS module: insights into ROOT’s RNTuple DAOS backend

Utilize PyDarshan log analysis tools and extend them to help analyze I/O 
characteristics of HEP workflows
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